Human Embryo Editing Is First U.S. Step Toward Correcting Disease-Causing Genes

Back to QNT News

The Toronto Star

August 4, 2017

Scientists have successfully edited the DNA of human embryos to erase a heritable heart condition, cracking open the doors to a controversial new era in medicine.

This is the first time gene editing on human embryos has been conducted in the United States. Researchers said in interviews this week that they consider their work very basic. The embryos were allowed to grow for only a few days and there was never any intention to implant them to create a pregnancy.

But they also acknowledged that they will continue to move forward with the science with the ultimate goal of being able to “correct” disease-causing genes in embryos that will develop into babies. News of the remarkable experiment circulated last week, but details became public Wednesday with a paper in the journal Nature.

The experiment is the latest example of how the laboratory tool known as CRISPR (or clustered regularly interspaced short palindromic repeats), a type of “molecular scissors,” pushes the boundaries of our ability to manipulate life and has been received with excitement and horror.

The most recent work is particularly sensitive because it involves changes to the germ line, that is, genes that could be passed on to future generations. The United States forbids the use of federal funds for embryo research and the Food and Drug Administration is prohibited from considering any clinical trials involving genetic modifications that can be inherited. A report from the National Academies of Sciences, Engineering and Medicine in February urged caution in applying CRISPR to human germ line editing, but laid out conditions by which research should continue. The new study abides by those recommendations.

Shoukhrat Mitalipov, one of the lead authors of the paper and a researcher at Oregon Health Science University, said he is conscious of the need for a larger ethical and legal discussion about genetic modification of humans but that his team’s work is justified because it involves “correcting” genes rather than changing them. “Really, we didn’t edit anything, neither did we modify anything ... Our program is toward correcting mutant genes,” he said.

Alta Charo, a bioethicist at the University of Wisconsin, Madison, who is co-chair of the National Academies committee looking at gene editing, said that concerns about the work that have been circulating in recent days are overblown.

“What this represents is a fascinating, important and rather impressive incremental step toward learning how to edit embryos safely and precisely,” she said. However, “no matter what anybody says this is not the dawn of the era of the designer baby.” She said that characteristics such as intelligence are influenced by multiple genes and researchers don’t understand all the components of how this is inherited much less have the ability to redesign it.

The research involved eggs from 12 healthy female donors and sperm from a male volunteer who carries the MYBPC3 gene, which causes hypertrophic cardiomyopathy (HCM). HCM is a disease of the heart muscles that can be terrifying because it can cause no symptoms and remain undetected until it causes sudden cardiac death. There’s no way to prevent or cure it and it impacts 1 in 500 people worldwide.

At around the time the sperm was injected into the eggs, researchers snipped out the gene that causes the disease. The result was far more successful than the researchers expected: As the embryo’s cells began to divide and multiply, a huge number appeared to be repairing themselves by using the normal, non-mutated copy of the gene from the females’ genetic material. In all, they saw that about 72% were corrected, a very high number. Researchers also noticed that there didn’t seem to be any “off-target” changes in the DNA, which has been a major safety concern of gene-editing research.

Mitalipov said he hoped the technique could one day be applied to a wide variety of genetic diseases—more than 10,000 known disorders can be traced back to a single gene—and that one of the team’s next targets may be BRCA, which is associated with breast cancer.

The first published work involving human embryos, reported in 2015, was done in China and targeted a gene that leads to the blood disorder beta thalassemia. But those embryos were abnormal and nonviable, and there were far fewer than the number used in the U.S. study.

Original headline: Human embryo editing erases heart condition; First such experiment in U.S. step toward goal to ‘correct’ disease-causing genes early

Copyright 2017 Toronto Star Newspapers Limited.

Copyright © LexisNexis, a division of Reed Elsevier Inc. All rights reserved.  
Terms and Conditions    Privacy Policy

Quality News Today is an ASQ member benefit offering quality related news
from around the world every business day.

ASQ is a global community of people passionate about quality, who use the tools, their ideas and expertise to make our world work better. ASQ: The Global Voice of Quality.